Skip to contents

This function allows you to enter (one or more of the available) category names as an arguments.

Usage

clio_get_cat(category, ...)

Arguments

category

A vector of categories.

...

All other arguments are passed on to Clio::clio_get()

Value

A data.frame (or list) consisting of all the variables within a certain category

See also

Clio::clio_get() Arguments other than category are passed to this function.

Examples


clio_get_cat("finanz", list = FALSE, from = 1800, to = 1900)
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> # A tibble: 7,074 × 8
#>    ccode country.name  year `Exchange Rates to UK Pound` Exchange Rates to US …¹
#>    <dbl> <chr>        <dbl>                        <dbl>                   <dbl>
#>  1    40 Austria       1800                        10.1                    NA   
#>  2   124 Canada        1800                         1.08                   NA   
#>  3   156 China         1800                         3.64                   NA   
#>  4   208 Denmark       1800                         5.09                   NA   
#>  5   276 Germany       1800                        11.9                     3.00
#>  6   372 Ireland       1800                         1.11                   NA   
#>  7   380 Italy         1800                         5.24                   NA   
#>  8   428 Latvia        1800                         3.78                   NA   
#>  9   528 Netherlands   1800                        11.3                     2.61
#> 10   616 Poland        1800                        21.3                    NA   
#> # ℹ 7,064 more rows
#> # ℹ abbreviated name: ¹​`Exchange Rates to US Dollar`
#> # ℹ 3 more variables: `Gold Standard` <dbl>,
#> #   `Long-Term Government  Bond Yield` <dbl>,
#> #   `Total Gross Central Government  Debt as a Percentage of GDP` <dbl>

clio_get_cat(c("agriculture", "environment"),
countries = "Netherlands",
mergetype = dplyr::inner_join, from = 1850, to = 1900)
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> # A tibble: 6 × 20
#>   ccode country.name  year `Cattle per Capita` `Cropland per Capita`
#>   <dbl> <chr>        <dbl>               <dbl>                 <dbl>
#> 1   528 Netherlands   1850               0.397                 0.235
#> 2   528 Netherlands   1860               0.386                 0.229
#> 3   528 Netherlands   1870               0.389                 0.223
#> 4   528 Netherlands   1880               0.362                 0.217
#> 5   528 Netherlands   1890               0.335                 0.211
#> 6   528 Netherlands   1900               0.320                 0.204
#> # ℹ 15 more variables: `Goats per Capita` <dbl>, `Pasture per Capita` <dbl>,
#> #   `Pigs per Capita` <dbl>, `Sheep per Capita` <dbl>, `Total Cattle` <dbl>,
#> #   `Total Cropland` <dbl>, `Total Number of Goats` <dbl>,
#> #   `Total Number of Pigs` <dbl>, `Total Number of Sheep` <dbl>,
#> #   `Total Pasture` <dbl>, `Biodiversity - naturalness` <dbl>,
#> #   `CO2 Emissions per Capita` <dbl>, `SO2 Emissions per Capita` <dbl>,
#> #   `Total CO2 Emissions` <dbl>, `Total SO2 Emissions` <dbl>
clio_get_cat("Produzioni", from = 1700, list = FALSE, mergetype = dplyr::inner_join)
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> # A tibble: 1,197 × 15
#>    ccode country.name   year `Aluminium Production` `Bauxite Production`
#>    <dbl> <chr>         <dbl>                  <dbl>                <dbl>
#>  1    36 Australia      1880                      0                    0
#>  2    76 Brazil         1880                      0                    0
#>  3   156 China          1880                      0                    0
#>  4   356 India          1880                      0                    0
#>  5   364 Iran           1880                      0                    0
#>  6   398 Kazakhstan     1880                      0                    0
#>  7   643 Russia         1880                      0                    0
#>  8   724 Spain          1880                      0                    0
#>  9   840 United States  1880                      0                    0
#> 10    36 Australia      1881                      0                    0
#> # ℹ 1,187 more rows
#> # ℹ 10 more variables: `Copper Production` <dbl>, `Gold Production` <dbl>,
#> #   `Iron Ore Production` <dbl>, `Lead Production` <dbl>,
#> #   `Manganese Production` <dbl>, `Nickel Production` <dbl>,
#> #   `Silver Production` <dbl>, `Tin Production` <dbl>,
#> #   `Tungsten Production` <dbl>, `Zinc Production` <dbl>

clio_get(c("Tin Production", "income inequality"), 
 from = 1800, 
 countries = c("Netherlands", "Russia"))
#> Joining with `by = join_by(ccode, country.name, year)`
#> # A tibble: 225 × 5
#>    ccode country.name  year `Tin Production` `Income Inequality`
#>    <dbl> <chr>        <dbl>            <dbl>               <dbl>
#>  1   643 Russia        1800                0                  NA
#>  2   643 Russia        1801                0                  NA
#>  3   643 Russia        1802                0                  NA
#>  4   643 Russia        1803                0                  NA
#>  5   643 Russia        1804                0                  NA
#>  6   643 Russia        1805                0                  NA
#>  7   643 Russia        1806                0                  NA
#>  8   643 Russia        1807                0                  NA
#>  9   643 Russia        1808                0                  NA
#> 10   643 Russia        1809                0                  NA
#> # ℹ 215 more rows

clio_get_cat("labor relation")
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> Joining with `by = join_by(ccode, country.name, year)`
#> # A tibble: 6,357 × 7
#>    ccode country.name  year Number of Days Lost in  Lab…¹ Number of Labour Dis…²
#>    <dbl> <chr>        <dbl>                         <dbl>                  <dbl>
#>  1    32 Argentina     1927                        363492                     56
#>  2    36 Australia     1927                       1713581                    441
#>  3    40 Austria       1927                        686560                    216
#>  4    56 Belgium       1927                       1658836                    186
#>  5   100 Bulgaria      1927                         57196                     23
#>  6   124 Canada        1927                        152570                     74
#>  7   156 China         1927                       7622029                    117
#>  8   208 Denmark       1927                        119000                     17
#>  9   233 Estonia       1927                          3067                      5
#> 10   246 Finland       1927                       1528182                     79
#> # ℹ 6,347 more rows
#> # ℹ abbreviated names: ¹​`Number of Days Lost in  Labour Disputes`,
#> #   ²​`Number of Labour Disputes`
#> # ℹ 2 more variables: `Number of Workers Involved  in Labour Disputes` <dbl>,
#> #   `Working week  in manufacturing` <dbl>